softmax回归
前几节介绍的线性回归模型适用于输出为连续值的情景。在另一类情景中,模型输出可以是一个像图像类别这样的离散值。对于这样的离散值预测问题,我们可以使用诸如softmax回归在内的分类模型。和线性回归不同,softmax回归的输出单元从一个变成了多个,且引入了softmax运算使输出更适合离散值的预测和训练。本节以softmax回归模型为例,介绍神经网络中的分类模型。
分类问题
让我们考虑一个简单的图像分类问题,其输入图像的高和宽均为2像素,且色彩为灰度。这样每个像素值都可以用一个标量表示。我们将图像中的4像素分别记为x1,x2,x3,x4。假设训练数据集中图像的真实标签为狗、猫或鸡(假设可以用4像素表示出这3种动物),这些标签分别对应离散值y1,y2,y3。
我们通常使用离散的数值来表示类别,例如y1=1,y2=2,y3=3。如此,一张图像的标签为1、2和3这3个数值中的一个。虽然我们仍然可以使用回归模型来进行建模,并将预测值就近定点化到1、2和3这3个离散值之一,但这种连续值到离散值的转化通常会影响到分类质量。因此我们一般使用更加适合离散值输出的模型来解决分类问题。
softmax回归模型
softmax回归跟线性回归一样将输入特征与权重做线性叠加。与线性回归的一个主要不同在于,softmax回归的输出值个数等于标签里的类别数。因为一共有4种特征和3种输出动物类别,所以权重包含12个标量(带下标的w)、偏差包含3个标量(带下标的b),且对每个输入计算o1,o2,o3这3个输出:
o1o2o3=x1w11+x2w21+x3w31+x4w41+b1,=x1w12+x2w22+x3w32+x4w42+b2,=x1w13+x2w23+x3w33+x4w43+b3. - 注:这里可以理解为三个彼此关联的线性回归。如果学过概率q 论,我们会知道,在这里不同类别的输出并不是独立的。也就是说,理解中的三个线性回归会有某种相互影响。比如在三种动物的分类中,如果样本是第一种动物,它就不会是第二种或第三种动物。这种结果的不独立(会有相互影响)主要表现在神经网络中的连接上。根据下面的图1,可以看出这三个线性回归在共用和参数之间的连接,这导致它们之间有一定关系。
下图用神经网络图描绘了上面的计算。softmax回归同线性回归一样,也是一个单层神经网络。由于每个输出o1,o2,o3的计算都要依赖于所有的输入x1,x2,x3,x4,softmax回归的输出层也是一个全连接层。
softmax运算
既然分类问题需要得到离散的预测输出,一个简单的办法是将输出值oi当作预测类别是i的置信度并将值最大的输出所对应的类作为预测输出,即输出argmaxioi。例如,如果o1,o2,o3分别为0.1,10,0.1,由于o2最大,那么预测类别为2,其代表猫。
然而,直接使用输出层的输出有两个问题。一方面,由于输出层的输出值的范围不确定,我们难以直观上判断这些值的意义。例如,刚才举的例子中的输出值10表示“很置信”图像类别为猫,因为该输出值是其他两类的输出值的100倍。但如果o1=o3=103,那么输出值10却又表示图像类别为猫的概率很低。另一方面,由于真实标签是离散值,这些离散值与不确定范围的输出值之间的误差难以衡量。
softmax运算符(softmax operator)解决了以上两个问题。它通过下式将输出值变换成值为正且和为1的概率分布:
y^1,y^2,y^3=softmax(o1,o2,o3), 其中:
y^1=∑i=13exp(oi)exp(o1),y^2=∑i=13exp(oi)exp(o2),y^3=∑i=13exp(oi)exp(o3). 容易看出y^1+y^2+y^3=1且0≤y^1,y^2,y^3≤1,因此y^1,y^2,y^3是一个合法的概率分布。这时候,如果y^2=0.8,不管y1^和y3^的值是多少,我们都知道图像类别为猫的概率是80%。此外,我们注意到:
iargmaxoi=iargmaxy^i, 因此softmax运算不改变预测类别输出。所以softmax的定义为:
softmax(x)i=∑j=1nexp(xj)exp(xi) 单样本分类的矢量计算表达式
为了提高计算效率,我们可以将单样本分类通过矢量计算来表达。在上面的图像分类问题中,假设softmax回归的权重和偏差参数分别为
W=⎣⎡w11w21w31w41w12w22w32w42w13w23w33w43⎦⎤,b=[b1b2b3], 设高和宽分别为2个像素的图像样本i的特征为
x(i)=[x1(i)x2(i)x3(i)x4(i)], 输出层的输出为
o(i)=[o1(i)o2(i)o3(i)], 预测为狗、猫或鸡的概率分布为
y^(i)=[y^1(i)y^2(i)y^3(i)]. softmax回归对样本ii分类的矢量计算表达式为
o(i)y^(i)=x(i)W+b,=softmax(o(i)). 小批量样本分类的矢量计算表达式
为了进一步提升计算效率,我们通常对小批量数据做矢量计算。广义上讲,给定一个小批量样本,其批量大小为n,输入个数(特征数)为d,输出个数(类别数)为q。设批量特征为X∈Rn×d。假设softmax回归的权重和偏差参数分别为W∈Rd×q。softmax回归的矢量计算表达式为
OY^=XW+b,=softmax(O), 其中的加法运算使用了广播机制,O,Y^∈Rn×q且这两个矩阵的第ii行分别为样本ii的输出o(i)和概率分布。y^(i)。
交叉熵损失函数
前面提到,使用softmax运算后可以更方便地与离散标签计算误差。我们已经知道,softmax运算将输出变换成一个合法的类别预测分布。实际上,真实标签也可以用类别分布表达:对于样本i,我们构造向量y(i)∈Rq,使其第y(i)(样本ii类别的离散数值)个元素为1,其余为0。这样我们的训练目标可以设为使预测概率分布尽可能y^(i)接近真实的标签概率分布y(i)。
我们可以像线性回归那样使用平方损失函数∥y^(i)−y(i)∥2/2。然而,想要预测分类结果正确,我们其实并不需要预测概率完全等于标签概率。例如,在图像分类的例子里,如果y(i)=3,那么我们只需要y^3(i)比其他两个预测值y^1(i)和y^2(i)大就行了。即使y^3(i)值为0.6,不管其他两个预测值为多少,类别预测均正确。而平方损失则过于严格,例如y^1(i)=y^2(i)=0.2比y^1(i)=0,y^2(i)=0.4的损失要小很多,虽然两者都有同样正确的分类预测结果。
改善上述问题的一个方法是使用更适合衡量两个概率分布差异的测量函数。其中,交叉熵(cross entropy)是一个常用的衡量方法:
H(y(i),y^(i))=−j=1∑qyj(i)logy^j(i) 其中带下标的yj(i)是向量y(i)中非0即1的元素,需要注意将它与样本ii类别的离散数值,即不带下标的y(i)区分。在上式中,我们知道向量y(i)中只有第y(i)个元素yy(i)(i)为1,其余全为0,于是H(y(i),y^(i))=−logy^y(i)(i)。也就是说,交叉熵只关心对正确类别的预测概率,因为只要其值足够大,就可以确保分类结果正确。当然,遇到一个样本有多个标签时,例如图像里含有不止一个物体时,我们并不能做这一步简化。但即便对于这种情况,交叉熵同样只关心对图像中出现的物体类别的预测概率。
假设训练数据集的样本数为n,交叉熵损失函数定义为
ℓ(Θ)=n1i=1∑nH(y(i),y^(i)), 其中Θ代表模型参数。同样地,如果每个样本只有一个标签,那么交叉熵损失可以简写成ℓ(Θ)=−(1/n)∑i=1nlogy^y(i)(i)。从另一个角度来看,我们知道最小化ℓ(Θ)等价于最大化exp(−nℓ(Θ))=∏i=1ny^y(i)(i),即最小化交叉熵损失函数等价于最大化训练数据集所有标签类别的联合预测概率。
模型的预测与评价
在训练好softmax回归模型后,给定任一样本特征,就可以预测每个输出类别的概率。通常,我们把预测概率最大的类别作为输出类别。如果它与真实类别(标签)一致,说明这次预测是正确的。在之后softmax的代码实现一节的实验中,我们将使用准确率(accuracy)来评价模型的表现。它等于正确预测数量与总预测数量之比。
上溢和下溢
连续数学在数字计算机上的根本困难是,我们需要通过有限数量的位模式来表示无限多的实数。这意味着我们在计算机中表示实数时,几乎总会引入一些近似误差。在许多情况下,这仅仅是舍入误差。舍入误差会导致一些问题,特别是当许多操作复合时,即使是理论上可行的算法,如果在设计时没有考虑最小化舍入误差的累积,在实践时也可能会导致算法失效。
一种极具毁灭性的舍入误差是下溢(underflow)。当接近零的数被四舍五入为零时发生下溢。许多函数在其参数为零而不是一个很小的正数时才会表现出质的不同。例如,我们通常要避免被零除(一些软件环境将在这种情况下抛出异常,有些会返回一个非数字 (not-a-number, NaN) 的占位符)或避免取零的对数(这通常被视为 −∞,进一步的算术运算会使其变成非数字)。d
另一个极具破坏力的数值错误形式是 上溢(overflow)。当大量级的数被近似为∞ 或 −∞ 时发生上溢。进一步的运算通常会导致这些无限值变为非数字。必须对上溢和下溢进行数值稳定的一个例子是 softmax 函数(softmax function)。上文中提到,softmax回归的定义为:
softmax(x)i=∑j=1nexp(xj)exp(xi) 考虑一下当所有xi都等于某个常数c时会发生什么。从理论分析上说,我们可以发现所有的输出都应该为n1。从数值计算上说,当c量级很大时,这可能不会发生。如果c是很小的负数,exp(c)就会underflow。这意味着softmax的分母会变成0,所以最后的结果是未定义的。当c是非常大的正数时,exp(c)的overflow再次导致整个表达式未定义。这两个困难能通过计算softmax(z)同时解决,其中z=x−maxixi。简单的代数计算表明,softmax解析上的函数值不会因为从输入向量减去或加上标量而改变。减去maxixi导致exp的最大参数为0,这排除了overflow的可能性。同样地,分母中至少有一个值为1的项,这就排除了因分母underflow而导致被零除的可能性。
还有一个小问题。分子中的下溢仍可以导致整体表达式被计算为零。这意味着,如果我们在计算 logsoftmax(x) 时,先计算 softmax 再把结果传给 log 函数,会错误地得到 −∞。相反,我们必须实现一个单独的函数,并以数值稳定的方式计算 logsoftmax。我们可以使用相同的技巧来稳定 logsoftmax 函数。
- softmax回归适用于分类问题。它使用softmax运算输出类别的概率分布。
- softmax回归是一个单层神经网络,输出个数等于分类问题中的类别个数。
- 交叉熵适合衡量两个概率分布的差异。